Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase

نویسندگان

  • J. Sidney Ang
  • Supipi Duffy
  • Romulo Segovia
  • Peter C. Stirling
  • Philip Hieter
چکیده

Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair.

The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 ...

متن کامل

Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures

Saccharomyces cerevisiae Mph1 is a 3-5' DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3' to 5' directionality, Mph1 displaced...

متن کامل

MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage.

We have characterized the MPH1 gene from Saccharomyces cerevisiae. mph1 mutants display a spontaneous mutator phenotype. Homologs were found in archaea and in the EST libraries of Drosophila, mouse, and man. Mph1 carries the signature motifs of the DEAH family of helicases. Selected motifs were shown to be necessary for MPH1 function by introducing missense mutations. Possible indirect effects ...

متن کامل

DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae.

To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects...

متن کامل

Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance.

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2016